Effect of Sensor Fusion for Recognition of Emotional States Using Voice, Face Image and Thermal Image of Face
نویسندگان
چکیده
A new integration method is presented to recognize the emotional expressions of human. We attempt to use both voices and facial expressions. For voices, we use such prosodic parameters as pitch signals, energy, and their derivatives, which are trained by Hidden Markov Model (HMM) for recognition. For facial expressions, we use feature parameters from thermal images in addition to visible images, which are trained by neural networks (NN) for recognition. The thermal images are observed by infrared ray which is not influenced by lighting conditions. The total recognition rates show better performance than that obtained from each single experiment. The results are compared with the recognition by human questionnaire.
منابع مشابه
Face Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملFusion of Multi-Scale Visible and Thermal Images using EMD for Improved Face Recognition
This paper presents the implementation of face recognition system using JDL framework. Fusion of visible and thermal images enhances the recognition rate and efficiency under varying illumination conditions. In this system, registration of visible and thermal images is performed using Fourier based method and fusion is performed using Empirical Mode Decomposition (EMD). The feature extraction a...
متن کاملThe Combinational Use Of Knowledge-Based Methods and Morphological Image Processing in Color Image Face Detection
The human facial recognition is the base for all facial processing systems. In this work a basicmethod is presented for the reduction of detection time in fixed image with different color levels.The proposed method is the simplest approach in face spatial localization, since it doesn’trequire the dynamics of images and information of the color of skin in image background. Inaddition, to do face...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملDisguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کامل